
Fritzing – A tool for advancing electronic prototyping for
designers

ABSTRACT
Today a growing community of DIY-practitioners, artists
and designers are using microcontroller-based toolkits to
express their concepts for digital artifacts by building
them. However, as these prototypes are generally
constructed using solder-free technologies, they are often
fragile and unreliable. This means a huge burden of care
and upkeep for these inventions when they are either
exhibited or sold.
We present a software application called Fritzing which
allows artists, designers and DIY-tinkerers to prepare their
hardware inventions for production. Through an interface
metaphor based on the typical workflow of the target
group, Fritzing has proven its ability to provide useful
support in the steps following the invention of an
interactive artifact.
Fritzing serves also as a tool for documenting these
interactive artifacts. As sharing of knowledge has been a
driving force within this new DIY-movement, there is a
need for a consistent and readable form of documentation
which Fritzing can provide.
Fritzing has also proven to be a useful tool in teaching
electronics to people without an engineering background.

Keywords
Physical Interaction Design, Design Tools, Prototyping

INTRODUCTION
In design and art schools around the world people are
using computer technology—both hardware and software
—in creative and innovative ways1. This trend has also
been embraced by a growing community of DIY-
practitioners who are developing and sharing new ways of
using technology2.
The programming environment Processing [1] and the
microcontroller Arduino [2] have been two important
enabling technologies in this area, and in fact have become

1

2

defacto standards. Processing is a Java-based
programming language including an easy-to-use IDE with
a focus on visual programming. Arduino is a system
consisting of a microcontroller with USB or Bluetooth
connection, and a programming environment targeted
towards designers and artists who want to build interactive
artifacts (Figure 1).
Both Arduino and Processing have a number of features
in common, and these commonalities—principles—have
been a strong influence in the development of Fritzing.

First, they both run on all three major operating systems.
Prior to the development of Arduino there was no easy
microcontroller-programming environment for Apple
computers. What might seem as a minor contribution has
been one of the reasons for the huge success of Arduino,
because of the prevalence of Apple computers within the
creative community.

Potsdam University of Applied Sciences
Pappelallee 8-9

14469 Potsdam, Germany

Jonathan Cohen
jonathan.cohen@fh-potsdam.de

Reto Wettach
wettach@fh-potsdam.de

André Knörig
andre.knoerig@fh-potsdam.de

Figure 1: Simple electronics for designers:
Arduino IDE and microcontroller

1 E.g., the „Physical Computing“ class by Tom Igoe at
ITP/NYU, „Computer Related Design“ at the Royal
College of Arts London, introduced by Gillian Crampton-
Smith, „Design of Physical Interfaces“ class by Reto
Wettach at the FH Potsdam
2 For example, the MAKE:community, with its flagship
print magazine, books, blog and regular events.
http://www.makezine.com

Second, both systems heavily rely on the open source idea,
not only in the way they have been and still are being
developed, but also within their community of users.
Processing, for example, has a feature which allows a
publication of a project in form of a website, including an
applet and the source code. Because of this feature, many
projects built with Processing are being published with the
source code, which allows other people, especially
beginners, to learn from existing projects.

Third, both Arduino and Processing share an orientation
towards designers and artists as users. The tools'
functionalities, workflow, and language are focused on the
activities of sketching: Without any initial setup, users can
start experimenting immediately, and directly experience
the results. A large set of examples can be accessed from
the main menu as a starting point a user’s own
explorations.

CURRENT DESIGN WORKFLOW
Whereas electrical engineers usually work with CAD
software and from there transfer directly to PCBs (printed
circuit boards), designers/artists take a more hands-on

approach. In conjunction with Arduino and other
electronic prototyping kits, they use a breadboard and wire
up their circuits manually (Figure 2). This proves to be
compatible with a self-taught trial-and-error copy-and-
paste approach [3]. It also enables the seeing-drawing-
seeing cycle, where the design is explored in a tight
iteration of modification followed by testing the experience
[4].
The breadboard is therefore not a crutch but an essential
aspect of the design process, allowing for quick changes
and a step-by-step approach. However, the reliability and
endurance of breadboard-based prototypes has been a big
problem. They are too fragile to be presented outside of
labs or studios. Furthermore there are limitations in
miniaturization and replication of such prototypes.

CONCEPT
Fritzing supports designers and artists of electronic
artifacts through this prototyping barrier. While the
breadboard approach works well for sketching out an
artifact, it does not facilitate the production of multiple
stable copies. In order to advance the workflow to this
stage, we have implemented a new approach to screen-
based design of electronics. Instead of starting with
schematics, as most Electronic Design Automation tools
(EDAs) do, we decided to allow the user to document his
working breadboard-based prototype with a visual
metaphor that mimics the user's real world situation. Once
this is accomplished, the software supports the user
through the process of turning her circuit into a
professional PCB (Figure 3).

Multiple Views
Fritzing offers three alternative views on the circuit: A
real-world-like breadboard view, a classical schematic
diagram view, and a PCB design view (Figure 4):
The default 'breadboard view' provides an abstracted
illustration of the common electronic parts, primarily as
seen from a top view. Parts that are more recognizable

Figure 2: Typical manual prototyping with
Arduino and breadboard

Figure 3: Concept of Fritzing: The recreation of their breadboard prototype in the Fritzing software
enables non-engineers to produce professional PCBs and also to share their designs.

from the side (e.g., a capacitor) are drawn in a 30°
perspective. The feel of the interaction is geared towards
tangibility. For example, parts can be dragged from the
palette onto the sketch area and wires can be drawn
directly from the parts' leads or from breadboard holes. (By
contrast, a typical EDA presents a tool palette, and
selecting such a tool puts the user interface into a modal
state.)
Fritzing’s schematic view is valuable for teaching and also
for dealing with more complicated circuits. It could also
serve as an entry point for users coming from a more
traditional electronics background.
The PCB view allows the designer to turn the sketch into a
professional circuit board. This does not require much
work, as Fritzing takes care of most of the tasks. In this
view, the user can make adjustments to the positioning of
the parts and control the routing process.

Challenges of the Multiple Views paradigm
This core feature turned out to be intricate for two reasons:
Transition and Synchronization. Transition refers to the
problem that a user who is only familiar with a breadboard
view somehow has to learn about, and become comfortable
with either schematic or pcb views – what they are about
and how they are used. Fritzing's job partly is to educate
users about these advanced options.
Synchronization refers to the problem that all views need
to be always maintain the same state – a semantic change
in any one view must be directly reflected in the others.
This ensures a simple mental model and is another feature
oriented to the non-engineer's unplanned style of working.

Transition
This problem was not clear to us from the beginning but
proved to be a stumbling block for many early adopters
with no technical background. Our approach is still
evolving, but we have chosen a number of techniques. For
example, when a part is selected in any view, its icon from
the other views is also displayed in the parts inspector.
Also, the navigator widget gives a small preview of the

other views next to the currently selected one. Whenever a
user performs an action in the main view, she can see that
a simultaneous change occurs in the other views. A third
approach is straightforwardly tutorial: When a user brings
up any view for the first time, a guiding help text is the
background of each window. We will be testing these
approaches, and others, as Fritzing moves forward.

Synchronization
Our intention is that to a naïve, non-technical user the
synchronization should be transparent and self-evident –
even though technically it is not. The physical situations
in the different views are certainly similar, but not equal,
which brings up technical and user interface problems.
Technically, keeping the views in synchrony is a
challenge. Originally, the plan was to have a single
model, and each view would be a “view” of that model.
However, as we found the form and behavior of each view
becoming more divergent, we have migrated to a system of
three models which communicate via messaging and
command objects.
In general, parts are easy to synchronize, though
sometimes parts visible in one view, are invisible in
another—for example the breadboard. This enables us, for
example, to easily preserve connections across views, even
if the user doesn’t directly see those connections. But the
hardest part of the problem is when behavior in one view
doesn’t clearly map to another view. For example,
connecting two parts by dropping them into the
breadboard, results in the two parts being connected by
wires in both breadboard and schematic view. This isn’t
too difficult. But what is trickier is when the user deletes
one of those connecting wires in schematic view. The
corresponding action in breadboard view is to lift one of
the parts out of the breadboard, and keep the remaining
connections by drawing a wire. Which leads to yet another
ambiguity: Which part should get popped out of the
breadboard? Or for a more complex ambiguity, what
should happen in the breadboard when a user connects two
nets in schematic view? Our solution is to draw wires and

Figure 4: Fritzing's synchronized views: breadboard, schematic, and PCB

create connections on a breadboard—and to add a
breadboard, if necessary. Such cases simply require
decisions. After a few of these have been solved, we are
confident that we can continue with this strategy and add
rules whenever new situations arise.
A related user interface issue, which seems simple at first
is, if you move or rotate a part in one view, should that
change propagate to the other views? Most of the time, the
answer would be “no”, because the positioning in each
view follows different rules and considerations. But for a
new user, who is struggling to understand the relationship
between these views, having a part change across the three
views might help the user keep the correspondence in
mind. Currently, we only synchronize structural/semantic
changes, but not changes that apply to the layout.

Parts
Another barrier presented by classic EDAs is part selection
—typically the user must choose from an endless list of
technical acronyms. Instead, Fritzing offers a visual parts
bin containing a set of ‘typical’ parts. One part in a given

family can represent any
of the others, so that the
user simply picks 'the'
resistor part if she needs
one. Later, the selected
part can be made more
specific by changing its
properties. While this
looks like a simple
interaction to the user,
underneath this is a
database-backed
operation for swapping
the part with the one
that has the desired
properties. We intend to
grow this mechanism to
seamlessly search a web-
based parts library in the
future.

Because the users in target group frequently make
spontaneous use of special parts, we also make it easy to
create parts on the fly,. A simple parts editor (Figure 5)
lets the user define the necessary images (preferably vector
graphics), the connectors, and metadata. Even unusual
parts, such as those found in hacking a toy can be added
using the parts editor.

Open interfaces
Fritzing makes consistent use of open interfaces to ensure
flexibility throughout the workflow. All native files use an
open XML schema, and it is possible to import footprints
from and export circuits to the popular EDA tool Eagle
[5].

The use of advanced graphics formats like SVG and PNG
makes it appealing for designers. They can take special
care of parts aesthetics and even style the PCBs, both
shape and print, with their favorite graphics software.
From a technical standpoint, basing our system primarily
around SVGs gave us very fast infinite zoom capibilities;
offered a general speedup over our previous pixmap-based
versions; and enabled us to easily manipulate the graphics
programmatically, for example, in export and in the parts
editor.
Finally, the software is completely open source and built
on top of the open Qt cross-platform application
framework [6].

Website
The accompanying website, www.fritzing.org, provides
documentation targeted at the learning style of the user
group: It contains project examples and tutorials,
pragmatic information about electronic parts, and links to
similar resources (Figure 6). Soon, the site will be
extended to become a hub for sharing projects, custom
parts, and related knowledge, similar to the online
community around Scratch [7]. We regard such a
community website as an essential element in fostering
creativity across the field, as recent research [8] and the
examples of Processing and Arduino have shown.

USE CASES
When developing Fritzing we based our design decisions
on three possible use cases:

Documentation
As discussed earlier, an important factor for a thriving
learning community is an easy way to document existing
projects and share them. Currently, in the DIY
community, electronic circuits are documented simply
photographing them. However, these images are hard to

Figure 6: Community website for supporting
open-source hardware and knowledge exchange

Figure 5: Parts editor for
ad-hoc editing and
creation of parts

read due to parts occluding other parts, and the difficulty
of following wires that cross and entangle.

Documenting with Fritzing
Fritzing provides a means for Arduino users to properly
document their projects. By simply recreating the physical
circuit in the software they create an archivable and
shareable file. The file includes breadboard, schematics,
and PCB view and can contain additional information such
as notes or part ordering numbers.
The file can then be shared with colleagues or teachers, or
published on the Fritzing website. A single-click share
button in the main toolbar brings up the website for
uploading the project. The shared file enables other users
to interactively inspect the circuit by moving elements
around and switching between views. They are invited to
re-use and appropriate the shared circuits for their own
projects – open-source hardware for the rest of us.

Teaching
Teaching “practical” electronics to a group of non-
engineering students is not an easy task. The first
difficulty is how to visually present circuits. The authors of
this paper tried using camera and projection, which had
the same occlusion and wire-following issues as previously
discussed. Second, in consulting with students it proved to
be difficult to “read” their breadboard-based prototypes, as
they were not built with clarity-of-presentation in mind.
Finally, it is a cumbersome task to find bugs on a

breadboard, as there are so
many reasons for errors:
from wrong wiring of
components, loose
connections, broken parts,
and problems with power
supply, to errors in the
software. If any of these
multiple sources of errors
can be eliminated,
debugging becomes easier.

Teaching with Fritzing
In the classroom, the
Fritzing software helped to
teach electronics to a larger
group of designers/artists by
displaying it on a large
screen. The high-resolution
graphics allow us to point

out detailed aspects, such as the bulge in the LED referring
to the positive polarity (Figure 7). The schematics view
was also introduced specifically with teachers in mind: By
switching to this view students can gradually be exposed to
the professional notation system and enabled to access the
many resources that are based on it.

Consultation with students is also enhanced by the ability
to exchange Fritzing files. A student who is in need of help
simply sends the current state of his design to the teacher
who can review it and return it along with suggestions for
improvement.

Production
When it comes to exhibiting or deploying electronic
artifacts, the designer needs to move beyond the
breadboard. As these are so delicate and fragile, it is nearly
impossible to transport them or to make them work for
mobile use, which is a huge constraint to the creativity of
the target group. Furthermore, the size of the prototype is
dictated by the size of the breadboard. The authors have
seen prototypes by students who sawed their breadboard in
half make it smaller.
Another problem with breadboard-based prototypes is that
they are one-offs: reproduction is expensive and
complicated. This might be the reason why in the past only
a few artists/designers have developed hardware concepts
which consist of multiples of the same interactive object.
One approach to make prototypes more robust is the use of
strip boards, an intermediary between breadboard and
PCB. However, we have observed that artists/designers are
hesitant to take this step as it still offers many pitfalls and
requires even more technical skills that they are not
willing to learn. Their wish is to have the working
breadboard prototype more-or-less automatically turned
into a real product, and it is not obvious to them why this
should not be possible. Basically, the artist/designer is
trying to focus on the aesthetic and emotional qualities of
the prototype, and may not be so interested in some of the
tedious nuts-and-bolts requirements.

Producing with Fritzing
Fritzing for the first time empowers non-engineers to
produce a prototype as a professional without requiring
them to know a great deal more than what they have
already learned in breadboard prototyping. The software
makes the transition to a PCB layout almost automatic. For
example, if the user creates an Arduino-based project, the
shape of the PCB defaults to a so-called Arduino shield
that can be plugged into the Arduino.
The circuit that the user assembled in the breadboard view
is reflected in the PCB view with matching footprints, and
the user only needs to arrange the parts on the PCB and
start the auto-routing process. Further manual corrections,
such as the use of jump wires, are possible (the software
may even suggest using jump wires or rearranging certain
parts on the board). The auto-routing capability is limited
at the moment but will improve with future versions..
More advanced users may make use of a function to export
to the professional Eagle EDA software.
Once the PCB layout is finished, it can be exported for
industrial- or self-manufacturing. Both processes are

Figure 7: High-
resolution graphics
enable recognition of
detailed physical hints
and affordances

documented on the Fritzing website. Self-manufacturing is
relatively cheap in equipment and material. Interestingly,
we have observed that design students, who are used to
working with their hands, do not have problems with this
process and take a lot of joy in creating their personal
PCBs (Figure 8).
In effect, the designer/artist creates a robust and lasting
version of his prototype, close to a product level. Its size
can be greatly reduced compared to the original, and it can
easily be produced in multiples.

RELATED WORK
As already mentioned, Fritzing attempts to follow the
approach of Processing and Arduino in a different arena.
They all strive to open technology to creative, non-
technical people. They do not provide radically new
functionality – it is rather the way that long-existing
technology is made accessible, respecting the way a group
of people work, and embedding it in a lively community.
These tools generally follow the design principles for
creative tools summarized in [9] and are discussed in
relation to Fritzing in [10].
Through this orientation, Fritzing distinguishes itself from
classical EDA tools made for engineers, such as Eagle [5].
While these tools provide much more functionality, they
are only usable by people who are trained professionals.
The commercial tool Circuit Wizard [11] at first sight
takes a similar approach to Fritzing: It also has a tangible
real-world feel, provides realistic simulation, and is quite
advanced in the complexity it can handle. However, it
fundamentally differs in the approach: First, it is oriented
towards learning about basic electronics and logic circuits.
Fritzing on the other hand is supporting non-engineers in
their pragmatic use of electronics. Our audience is mostly
working with micro-controller kits and is programming
the logic rather than building it from basic logic parts. The

parts they need are rather sensors and actuators, often
unusual ones. Circuit Wizard does not support the creation
of custom parts because the part creator would have to take
care of the difficult simulation properties. For the same
reason, Circuit Wizard does not offer micro-controllers or
advanced sensors. A further differentiating aspect is
Fritzing's strong orientation towards open community
exchange. This is reflected across the whole project: it is
open source, uses open standards and file formats, is cross-
platform, provides a website for open sharing – and it's
free.
The d.tools suite [12] is another toolkit for designers
working with electronics. It uses a powerful visual editor
with customized plug-and-play hardware to let users
quickly sketch physical interactions. As such, we see it as
complementary to Fritzing, which is more concerned with
a later stage of prototyping and refinement. However, we
would be interested to see how a more low-level approach
such as in Arduino and Fritzing compares to that of d.tools
in the context of a design process. While the latter is
certainly easier to use, the former provides more flexibility
and freedom and might instill a stronger appreciation of
electronics as a creative material.

DEVELOPMENT
Evaluation & Feedback
Even though Fritzing is still under development, we have
had several important opportunities to evaluate our
software: through an international workshop with teachers
for Physical Computing3; and through teaching
undergraduates in Potsdam and Weimar.
The first version that was used throughout these
evaluations was built on-top of a complex, experimental,
Java-based framework which was specialized for creating
diagram editors, for example flowcharts4. It allowed us a
quick start, but it proved to be too restrictive and
cumbersome in the long run to tune it to our needs. Instead
of the schematic and PCB views, we built an assisted
export to the Eagle software. This allowed for a quick,
testable publication of our concept and was helpful to
elicit early feedback.
The overall feedback from students using Fritzing was
positive. We could observe that they learned quickly and
were excited about the opportunities of such a tool. The
students had no difficulties in copying their real life
prototype into the 'Breadboard View' and found it natural
to include such software into their workflow. However, for
the subsequent steps they needed assistance, especially for
finalizing the PCB design in Eagle. Later, in the PCB-lab
they were able to work quite autonomously again.

3 See http://fritzing.org/events/ffs08
4 Eclipse GMF (Graphical Modeling Framework), see

http://www.eclipse.org/modeling/gmf

Figure 8: Arduino shield designed with Fritzing
by 1st semester design student, and self-produced

The teachers' workshop took place in June 2008 in
Potsdam. While generally highly welcoming the new tool,
attendees were critical of the lower level UI design in
Fritzing and the snappiness of the interaction. They made
the point that no one would use Fritzing if the clunkiness
of the low-level interaction interfered with the focus
required to actually work through the process of designing
a board. . Some of the problems were obvious, e.g., you
couldn’t simply drag-and-drop parts, but had to select a
part like a tool, and then click to place a part; once a part
was in the sketch, dragging it was painfully slow, and
since auto-connection didn’t work, connecting parts
required careful tedious mousing; zoom was too slow.
At a higher level, the jump to Eagle was something of a
shock to our users—suddenly plunging them into a
different and complex UI, even with some scripted
assistance, proved quite daunting.
Other requests centered around parts: Making a big library
of parts available; the ability to quickly make new custom
parts; quick swapping between parts; not restricting the
PCB output to Arduino shields; generating a Bill of
Materials; modules: the ability to treat a set of parts as a
single unit - all without frightening away novice users.
A final set of requests focused on “low-level intelligence”.
Although a full-scale simulator was deemed unnecessary,
automated help such as: warnings about short-circuits; nets
not being fully routed; and help with part placement for
routing were all deemed valuable additions.

Re-focus
We decided to re-write the software in order to gain more
flexibility in realizing our ideas, and in order to improve
the general performance of the tool. For one thing, we
realized that Fritzing didn’t really fit cleanly into a
diagramming model—for example, unlike in a flowchart,
wires have to be first-class objects that can stand on their
own, without necessarily being owned by the parts they
are connected to.
The new version is built on Qt, a very solid, full-featured,
C++ GUI framework, which includes fast graphics, and
which supports development across all three major
platforms..
We also used the opportunity to consider the collected
feedback, crafted a more fluent interaction, and included
the alternative views. Taking care of the PCB design
ourselves means enormous additional work, but it proved
necessary, based on the observation that the “cognitive
slap-in-the-face” that occurred in the switch to Eagle was
not accepted by the users.

CONCLUSION & OUTLOOK
The first alpha version of Fritzing was downloaded over
10,000 times, which has encouraged the team to continue

development of the software. The upcoming release of the
new version will show if we understood the feedback.
For the further improvement of the tool, we have identified
three main issues that would enhance its benefit:

• The concept of modules needs to be introduced: once a
user has designed a working module, it would be
helpful if others could import the entire module in one
step.

• Due to the limited number of parts in Fritzing's parts
library it would be possible to populate a placement
machine with a fixed set of parts, and therefore reduce
cost in the production of populated PCBs. However, we
have not yet built a proof of concept, and we have yet to
set up the entire production process.

• The overall quality of the PCB-design needs to be
improved: the auto-router needs some serious
optimization; there is no auto-placement of parts so far;
and a smart way of exporting/importing to professional
EDAs is also missing.

ACKNOWLEDGMENTS
We would like to thank the growing team of people
working on Fritzing. The core team included Zach
Eveland, Dirk van Oosterbosch, Brendan Howell, Mariano
Crowe, Jenny Chowdhury, Jannis Leidel, and the authors,
with support from Omer Yosha, Travis Robertson, Marcus
Paeschke, Stefan Hermann, Myriel Milicevic, and
Johannes Landstorfer.
Invaluable feedback was provided by classes at FH
Potsdam and Bauhaus-University Weimar, the participants
in the Fritzing summits, as well as the many users who
have downloaded and tried early releases.
The work on this project was made possible through the
greatly appreciated financial support of the Brandenburg
Ministry of Science, Research, and Culture (MWFK).

REFERENCES
1. Reas, C, and Fry, B. Processing: A Programming

Handbook for Visual Designers and Artists. MIT Press,
2007. Software available at http://www.processing.org

2. Mellis, D., Banzi, M., Cuartielles, D., and Igoe,
T. Arduino: An Open Electronic Prototyping Platform.
Presented at alt.CHI 2007. Toolkit available at
http://www.arduino.cc

3. Hartmann, B, Doorley, S., and Klemmer, S.R.
Hacking, Mashing, Gluing: Understanding Opportunistic
Design. In IEEE Pervasive Computing 7(3), 2008.

4. Schön, D. A. The Reflective Practitioner: How
Professionals Think in Action. New York: Basic Books,
1983.

5. EAGLE software by CadSoft.
http://www.cadsoft.de

http://www.cadsoft.de/
http://www.arduino.cc/

6. Qt application framework by Trolltech.
http://www.trolltech.com

7. Monroy-Hernández, A. ScratchR: sharing user-
generated programmable media. In Proceedings of the
6th international Conference on interaction Design and
Children. IDC '07. ACM, New York, NY, 167-168.

8. Fischer, G. Creativity and Distributed
Intelligence. In Report of Workshop on Creativity
Support Tools, 2005, 71-73.

9. Resnick, M., et al. Design Principles for Tools to
Support Creative Thinking. In Report of Workshop on
Creativity Support Tools, 2005, 25-36.

10. Knörig, A. Design Tools Design: How to design
tools for designers, and a proposal of two new tools for
the design of physical interactions. Master Thesis,
Interface Design, Univ. of Applied Sciences Potsdam,
2008.

11. Circuit Wizard software by New Wave Concepts.
http://www.new-wave-concepts.com

12. Hartmann, B., Klemmer, S. R., Bernstein, M.,
Abdulla, L., Burr, B., Robinson-Mosher, A., and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. In Proceedings of User
interface Software and Technology. UIST '06. ACM,
New York, NY, 299-308.

http://www.new-wave-concepts.com/
http://www.trolltech.com/

	ABSTRACT
	Keywords

	INTRODUCTION
	CURRENT DESIGN WORKFLOW
	CONCEPT
	Multiple Views
	Challenges of the Multiple Views paradigm
	Transition
	Synchronization

	Parts
	Open interfaces
	Website

	USE CASES
	Documentation
	Documenting with Fritzing

	Teaching
	Teaching with Fritzing

	Production
	Producing with Fritzing

	RELATED WORK
	DEVELOPMENT
	Evaluation & Feedback
	Re-focus

	CONCLUSION & OUTLOOK
	ACKNOWLEDGMENTS
	REFERENCES

